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We find actual evidence, relying upon vorticity time series taken in a high-Reynolds-number atmospheric
experiment, that to a very good approximation the surface boundary layer flow may be described, in a
statistical sense and under certain regimes, as an advected ensemble of homogeneous turbulent systems,
characterized by a log-normal distribution of fluctuating intensities. Our analysis suggests that the usual direct
numerical simulations of homogeneous and isotropic turbulence, performed at moderate Reynolds numbers,
may play an important role in the study of turbulent boundary layer flows, if supplemented with appropriate
statistical information concerned with the structure of large-scale fluctuations.
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A major difficulty in dealing with boundary layer flows at
high Reynolds numbers is that they cannot be straightfor-
wardly modeled within the theory of homogeneous isotropic
turbulence, rendering unlikely, in principle, an application of
the general results of the latter in the context of the former.
In fact, essentially all the symmetry properties of the evolu-
tion equations break down close to the boundaries due to the
intermittent production of a whole “zoo” of flow phenomena,
like low-speed streaks and a number of vortex structures.
The lack of homogeneity and isotropy is analogously ob-
served far enough from the walls, where the transition to the
outer laminar flow takes place, a region of strong entrain-
ment and high intermittency factor, as discussed several de-
cades ago by Klebanoff in his benchmark work �and subse-
quent papers� on turbulent boundary layers �1�.

It has been long hypothesized, however, that in a typical
turbulent boundary layer problem, as in the flow over a flat
or rough surface, there is an intermediate range of normal
distances from the boundary—the logarithmic layer—where
the fundamental symmetries of the Navier-Stokes equation
are approximately restored at small scales, yielding a stage
for tests of the statistical theory of turbulence. A recent in-
vestigation of related issues is provided by Sreenivasan et al.
�2�, from the analysis of the time series produced by hot-wire
anemometry in a stable atmospheric boundary layer. It is
worth noting that in atmospheric experiments it is usual to
get samples where the flow is at best approximately statisti-
cally stationary, which makes the connection with the phys-
ics of homogeneous and isotropic turbulence not obvious
at all. Actually, experience shows that, while the original
velocity signal can be used to check the Kolmogorov four-
fifths law or the scaling exponents of structure functions, for
instance, the lack of stationarity has to be carefully ac-
counted for in the study of probability distributions of local
fields. As a pragmatic solution of such a “large-scale inter-
mittency” problem, the authors of Ref. �2� have retained
from the rough anemometric data only the samples that
would lead to statistically stationary regimes. It turned out,
a posteriori, that their prescription worked consistently well.

The fact that several scaling features of homogeneous tur-
bulence are observed without any further handling of the

velocity signal seems to indicate that the underlying bound-
ary layer flow could be modeled, in a first approximation
which disregards shear effects, as an ensemble of homoge-
neous turbulent systems, collectively advected by the mean
local velocity U. Each element of the ensemble would cor-
respond to a flow with a definite value of the turbulent in-
tensity I�urms/U. Thus, if we are interested in modeling
fluctuations of some observable defined at length scale �,
O�� , t�, we may write

O��,t� = x�t�Õ��,t� , �1�

where Õ�� , t� denotes the observable fluctuation associated
with an arbitrary homogeneous and isotropic turbulent flow,
and x�t� is an independent random function of time, which
accounts for the fluctuations of the rms values of O�� , t�. In
effect, x�t� may be thought to play the role of a positive
enveloping function which modulates the faster fluctuations
of O�� , t�.

As an illustration of the kind of modeling we have in
mind, take the case of longitudinal velocity differences
v��t��v1�r�+�x̂ , t�−v1�r� , t�. We have, from �1�,

v��t� = x�t�ṽ��t� . �2�

It is clear, therefore, that

�v�
q� � Sq��� = �xq��ṽ�

q� � S̃q��� , �3�

that is, the structure functions Sq��� and S̃q��� depend on the
length scale � exactly in the same way. On the other hand, it
is not difficult to find that the probability distribution func-
tions �PDFs� of v� and ṽ� are, in general, completely differ-
ent: we have

��v�� = �
0

�

dx	x	−1�̃�v�/x�f�x� , �4�

where f�x� is the PDF for the random variable x introduced
in �1�, and ��·� and �̃�·� refer to the PDFs of velocity differ-
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ences in the boundary layer and homogeneous isotropic
flows, respectively.

Our central aim in this paper is to discuss the statistics of
the random enveloping function x�t�, through the analysis of
the vorticity time series obtained from an atmospheric ex-
periment carried out at very high Reynolds number �3�. The
measurements were performed with a 20 hot-wire probe,
which incorporated specific design features appropriate for
the particularities of the field experiment. The data were col-
lected at a sampling rate of 10 kHz �which was high enough
to resolve the dissipative Kolmogorov scale� in a tower 10 m
high, placed over a grass-covered flat surface. The total time
length of the velocity signal is 15 min, corresponding, by the
mean wind velocity, to 6.3 km. The anemometer set was
calibrated at the measurement position, to avoid possible per-
turbations caused by its manipulation and the variation of
environmental factors. The Taylor-based Reynolds number
of the flow, observed in approximately neutral and stable
conditions, is R�
104; for a more detailed account of the
experimental and phenomenological parameters, see �3�. The
experiment outcome, then, consists of time series for the
three velocity components and all the nine components of the
velocity-gradient tensor as well.

We intend to check, on the basis of purely heuristic and
phenomenological arguments, whether the random variable
x, as considered in Eq. �1�, is log-normally distributed. A
turbulent blob of size L and rate of energy dissipation � is
produced in the boundary layer along a complex cascade
directed toward larger scales, as shown in Fig. 1. As a work-
ing hypothesis, an analogy with the multiplicative cascade
arguments of the Kolmogorov 1962 �K62� phenomenology
�4,5� can be drawn here, assigning log-normal fluctuations to
�. Its random behavior would be the result of successive
disruptions of coherent vortex structures generated at the
boundary, followed by their straining and transport to upper
positions in the flow. Since x�t� may be essentially identified
to fluctuations of the rms velocity, the usual expression

urms � ��L�1/3, �5�

taken from the statistical theory of turbulence �6�, establishes
a connection between x�t� and �. Therefore, we expect that

urms, or, equivalently, x�t�, will be log-normally distributed,
at least approximately.

Manifestations of log-normal statistics in the physics of
boundary layer flows are not unusual. It is worth mentioning
that such distributions are found in turbulent boundary layers
for �i� the time intervals between velocity “bursts” �7�; �ii�
the spanwise separation between streaks intermittently pro-
duced at the wall �8�; and �iii� the small-scale fluctuations of
the dissipation field �9�. An interesting question is if all of
these instances of log-normality can be related to each other
within the framework of some unifying description.

Assuming that the x variable in Eq. �1� is log-normally
distributed is just half of the whole story. We also have to
model the fluctuations of the small-scale observable of spe-
cific interest, which we take to be the vorticity field, �i
=�ijk� jvk. There are experimental indications that even at
moderate Reynolds numbers the enstrophy PDF �scaled to
have unit variance� has, for a large range of enstrophy val-
ues, a turbulent asymptotic profile �10�. Relying on isotropy,
that observation suggests that a similar asymptotic behavior
should hold for the vorticity fluctuations at Reynolds num-
bers which are not necessarily very high. In particular, it is
likely that the vorticity PDFs obtained from direct numerical
simulations, like the ones performed by Vincent and Me-
neguzzi �11�, have asymptotic shapes �we mean simulations
with R��150�.

We have defined, motivated by the above considerations,
a smooth polynomial interpolation of the Vincent-Meneguzzi
numerical vorticity PDF and used that interpolation to gen-
erate a stochastic process for �̃, an arbitrary component of
vorticity, by means of a standard Monte Carlo procedure
�12�. More precisely, let i=1,2 , . . .. be an integer index and
x�i� and �̃�i� be independent random variables distributed
according to the log-normal and the Vincent-Meneguzzi vor-
ticity PDF, respectively, both with fixed variances. A stochas-
tic process that simulates the vorticity fluctuations measured
in the boundary layer is given by the series defined by

��i� = x�i��̃�i� . �6�

The log-normality of the x variable is implemented with the
help of the mapping x=exp�y�, where y is normally distrib-
uted with variance �y

2. Observe that

H�n� �
�x2n�
�x2�n

��̃2n�
��̃2�n = e2n�n−1��y

2
H̃�n� , �7�

a result that gives a hint as to why the hyperflatness factors
H�n� are reasonably higher in boundary layers than the ones
typically found in homogeneous and isotropic turbulent
flows. We have considered a stochastic process with 31
�106 elements, for various values of �y. The choice �y
=0.51 leads to an excellent agreement with the empirical
vorticity PDFs, as shown in Fig. 2.

An important point concerns the precision assigned to �y,
and how it affects the vorticity distribution. We have found
that alternative profiles for the PDF of �̃ and appropriate
redefinitions of �y lead to reasonable fittings as well. If, for
example, �̃ is taken to be normally distributed �which is
obviously wrong� we get �y =0.7. On the other hand, if we

FIG. 1. Coherent structures generated close to the wall are trans-
ported to the bulk of the flow. These configurations are subject to
random advection and instabilities causing them to disrupt, grow,
and burst as the evolution proceeds. Approximately homogeneous
and isotropic turbulence regions of size of order L are produced
with random energy transfer rates �.
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take a Student’s t distribution, which models reasonably well
the vorticity PDF tails, as advanced in Ref. �13�, a very good
agreement is found again, this time with �y =0.61. The un-
certainty in the value of �y is partially due to properties of
the log-normal distribution and partially related to the struc-
ture of Eq. �4�. We will not discuss these mathematical as-
pects in detail, but it suffices to note that a random variable
x, log-normally distributed, can be decomposed arbitrarily as
the product of two other independent random variables, x1
and x2, both following log-normal distributions. This means
that we may write

x�i� = x1�i�x2�i� �8�

to get, from �6�,

��i� = x1�i��x2�i��̃�i�� = x1�i��̄�i� , �9�

where x1�i� takes the place of x�i� and �̄�i��x2�i��̃�i� takes
the place of �̃�i� in Eq. �6�. We find, thus, that the mere
fitting of the vorticity PDF through the use of the stochastic
process �6� has to be interpreted with care, even if the fitting
is incredibly accurate.

We conclude this paper by emphasizing that the problem
of modeling fluctuations of vorticity—or any other small-
scale observable—in the boundary layer is not so straightfor-
ward as it could seem at first sight. While we have demon-
strated that the use of the log-normal distributions and
statistical modeling based on DNS lead to excellent results,
more elaborate statistical information is in order. A promis-
ing approach is to find instances where the same enveloping
function x�t�, introduced in Eq. �1�, would modulate inter-
mittent fluctuations of alternative observables. We suggest
filtered velocity fields as good candidates. In spite of the
usual Gaussian behavior of velocity, it is known that a
frequency-filtering procedure applied to the velocity time se-
ries produces non-Gaussian PDFs �2�, which, hopefully,
could be modeled with the help of the log-normal random
functions advanced here. Since this is an issue needing far
more detailed analysis, a comprehensive discussion is re-
served for future work.

Note added. Recently, we became aware of a paper by
Bottcher et al. �14�, which has some overlap with the work
presented here, mainly in the interpretation of boundary layer
flows in terms of homogeneous isotropic turbulent en-
sembles.
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FIG. 2. �Color online� Vorticity histograms. The black line is the
result of the simulated stochastic process; the underlying colored
lines are associated with the components of the vorticity vector,
measured in the atmospheric boundary layer.
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